148 research outputs found

    Similar biodiversity of ectomycorrhizal fungi in set-aside plantations and ancient old-growth broadleaved forests

    Get PDF
    Setting aside overmature planted forests is currently seen as an option for preserving species associated with old-growth forests, such as those with dispersal limitation. Few data exist, however, on the utility of set-aside plantations for this purpose, or the value of this habitat type for biodiversity relative to old-growth semi-natural ecosystems. Here, we evaluate the contribution of forest type relative to habitat characteristics in determining species richness and composition in seven forest blocks, each containing an ancient old-growth stand (> 1000 yrs) paired with a set-aside even-aged planted stand (ca. 180 yrs). We investigated the functionally important yet relatively neglected ectomycorrhizal fungi (EMF), a group for which the importance of forest age has not been assessed in broadleaved forests. We found that forest type was not an important determinant of EMF species richness or composition, demonstrating that set-aside can be an effective option for conserving ancient EMF communities. Species richness of above-ground EMF fruiting bodies was principally related to the basal area of the stand (a correlate of canopy cover) and tree species diversity, whilst richness of below-ground ectomycorrhizae was driven only by tree diversity. Our results suggest that overmature planted forest stands, particularly those that are mixed-woods with high basal area, are an effective means to connect and expand ecological networks of ancient old-growth forests in historically deforested and fragmented landscapes for ectomycorrhizal fungi

    The distribution and evolution of fungal symbioses in ancient lineages of land plants

    Get PDF
    An accurate understanding of the diversity and distribution of fungal symbioses in land plants is essential for mycorrhizal research. Here we update the seminal work of Wang and Qiu (Mycorrhiza 16:299-363, 2006) with a long-overdue focus on early-diverging land plant lineages, which were considerably under-represented in their survey, by examining the published literature to compile data on the status of fungal symbioses in liverworts, hornworts and lycophytes. Our survey combines data from 84 publications, including recent, post-2006, reports of Mucoromycotina associations in these lineages, to produce a list of at least 591 species with known fungal symbiosis status, 180 of which were included in Wang and Qiu (Mycorrhiza 16:299-363, 2006). Using this up-to-date compilation, we estimate that fewer than 30% of liverwort species engage in symbiosis with fungi belonging to all three mycorrhizal phyla, Mucoromycota, Basidiomycota and Ascomycota, with the last being the most widespread (17%). Fungal symbioses in hornworts (78%) and lycophytes (up to 100%) appear to be more common but involve only members of the two Mucoromycota subphyla Mucoromycotina and Glomeromycotina, with Glomeromycotina prevailing in both plant groups. Our fungal symbiosis occurrence estimates are considerably more conservative than those published previously, but they too may represent overestimates due to currently unavoidable assumptions

    Atmospheric nitrogen deposition impacts on the structure and function of forest mycorrhizal communities: a review

    Get PDF
    Humans have dramatically increased atmospheric nitrogen (N) deposition globally. At the coarsest resolution, N deposition is correlated with shifts from ectomycorrhizal (EcM) to arbuscular mycorrhizal (AM) tree dominance. At finer resolution, ectomycorrhizal fungal (EcMF) and arbuscular mycorrhizal fungal (AMF) communities respond strongly to long-term N deposition with the disappearance of key taxa. Conifer-associated EcMF are more sensitive than other EcMF, with current estimates of critical loads at 5–6 kg ha−1 yr−1 for the former and 10–20 kg ha−1 yr−1 for the latter. Where loads are exceeded, strong plant-soil and microbe-soil feedbacks may slow recovery rates after abatement of N deposition. Critical loads for AMF and tropical EcMF require additional study. In general, the responses of EcMF to N deposition are better understood than those of AMF because of methodological tractability. Functional consequences of EcMF community change are linked to decreases by fungi with medium-distance exploration strategies, hydrophobic walls, proteolytic capacity, and perhaps peroxidases for acquiring N from soil organic matter. These functional losses may contribute to declines in forest floor decomposition under N deposition. For AMF, limited capacity to directly access complexed organic N may reduce functional consequences, but research is needed to test this hypothesis. Mycorrhizal biomass often declines with N deposition, but the relative contributions of alternate mechanisms for this decline (lower C supply, higher C cost, physiological stress by N) have not been quantified. Furthermore, fungal biomass and functional responses to N inputs probably depend on ecosystem P status, yet how N deposition-induced P limitation interacts with belowground C flux and mycorrhizal community structure and function is still unclear. Current ‘omic analyses indicate potential functional differences among fungal lineages and should be integrated with studies of physiology, host nutrition, growth and health, fungal and plant community structure, and ecosystem processes

    Epiparasitic plants specialized on arbuscular mycorrhizal fungi

    Get PDF
    Over 400 non-photosynthetic species from 10 families of vascular plants obtain their carbon from fungi and are thus defined as myco-heterotrophs. Many of these plants are epiparasitic on green plants from which they obtain carbon by 'cheating' shared mycorrhizal fungi. Epiparasitic plants examined to date depend on ectomycorrhizal fungi for carbon transfer and exhibit exceptional specificity for these fungi, but for most myco-heterotrophs neither the identity of the fungi nor the sources of their carbon are known. Because many myco-heterotrophs grow in forests dominated by plants associated with arbuscular mycorrhizal fungi (AMF; phylum Glomeromycota), we proposed that epiparasitism would occur also between plants linked by AMF. On a global scale AMF form the most widespread mycorrhizae, thus the ability of plants to cheat this symbiosis would be highly significant. We analysed mycorrhizae from three populations of Arachnitis uniflora (Corsiaceae, Monocotyledonae), five Voyria species and one Voyriella species (Gentianaceae, Dicotyledonae), and neighbouring green plants. Here we show that non-photosynthetic plants associate with AMF and can display the characteristic specificity of epiparasites. This suggests that AMF mediate significant inter-plant carbon transfer in nature

    Functional complementarity of ancient plant–fungal mutualisms: contrasting nitrogen, phosphorus and carbon exchanges between Mucoromycotina and Glomeromycotina fungal symbionts of liverworts

    Get PDF
    Liverworts, which are amongst the earliest divergent plant lineages and important ecosystem pioneers, often form nutritional mutualisms with arbuscular mycorrhiza‐forming Glomeromycotina and fine‐root endophytic Mucoromycotina fungi, both of which coevolved with early land plants. Some liverworts, in common with many later divergent plants, harbour both fungal groups, suggesting these fungi may complementarily improve plant access to different soil nutrients. We tested this hypothesis by growing liverworts in single and dual fungal partnerships under a modern atmosphere and under 1500 ppm [CO2], as experienced by early land plants. Access to soil nutrients via fungal partners was investigated with 15N‐labelled algal necromass and 33P orthophosphate. Photosynthate allocation to fungi was traced using 14CO2. Only Mucoromycotina fungal partners provided liverworts with substantial access to algal 15N, irrespective of atmospheric CO2 concentration. Both symbionts increased 33P uptake, but Glomeromycotina were often more effective. Dual partnerships showed complementarity of nutrient pool use and greatest photosynthate allocation to symbiotic fungi. We show there are important functional differences between the plant–fungal symbioses tested, providing new insights into the functional biology of Glomeromycotina and Mucoromycotina fungal groups that form symbioses with plants. This may explain the persistence of the two fungal lineages in symbioses across the evolution of land plants
    • 

    corecore